翻訳と辞書 |
Pascal's simplex : ウィキペディア英語版 | Pascal's simplex In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem. == Generic Pascal's ''m''-simplex == Let ''m'' (''m'' > 0) be a number of terms of a polynomial and ''n'' (''n'' ≥ 0) be a power the polynomial is raised to. Let denote a Pascal's ''m''-simplex. Each Pascal's ''m''-simplex is a semi-infinite object, which consists of an infinite series of its components. Let denote its ''n''th component, itself a finite (''m − 1'')-simplex with the edge length ''n'', with a notational equivalent .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pascal's simplex」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|